An Explainable Artificial Intelligence Approach for Remaining Useful Life Prediction

نویسندگان

چکیده

Prognosis and health management depend on sufficient prior knowledge of the degradation process critical components to predict remaining useful life. This task is composed two phases: learning prediction. The first phase uses available information learn system’s behavior. second predicts future behavior based system estimates its lifetime. Deep approaches achieve good prognostic performance but usually suffer from a high computational load lack interpretability. Complex feature extraction models do not solve this problem, as they lose in thus have poor prognosis for A new prepossessing approach used with clustering address issue. It allows restructuring data into homogeneous groups strongly related each other using simple architecture LSTM model. advantageous terms time possibility limited capabilities. Then, we focus interpretability deep Explainable AI interpretable RUL proposed offers model improvement enhanced interpretability, enabling better understanding contributions. Experimental results NASA C-MAPSS dataset show compared common methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Approach for Remaining Useful Life Prediction

Prediction of the remaining useful life (RUL) of critical components is a non-trivial task for industrial applications. RUL can differ for similar components operating under the same conditions. Working with such problem, one needs to contend with many uncertainty sources such as system, model and sensory noise. To do that, proposed models should include such uncertainties and represent the bel...

متن کامل

A Similarity-based Prognostics Approach for Remaining Useful Life Prediction

Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimati...

متن کامل

An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring

Accurate equipment remaining useful life prediction is critical to effective condition based maintenance for improving reliability and reducing overall maintenance cost. In this paper, an artificial neural network (ANN) based method is developed for achieving more accurate remaining useful life prediction of equipment subject to condition monitoring. The ANN model takes the age and multiple con...

متن کامل

Explainable Artificial Intelligence for Training and Tutoring

This paper describes an Explainable Artificial Intelligence (XAI) tool that allows entities to answer questions about their activities within a tactical simulation. We show how XAI can be used to provide more meaningful after-action reviews and discuss ongoing work to integrate an intelligent tutor into the XAI framework.

متن کامل

Building Explainable Artificial Intelligence Systems

As artificial intelligence (AI) systems and behavior models in military simulations become increasingly complex, it has been difficult for users to understand the activities of computer-controlled entities. Prototype explanation systems have been added to simulators, but designers have not heeded the lessons learned from work in explaining expert system behavior. These new explanation systems a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aerospace

سال: 2023

ISSN: ['2226-4310']

DOI: https://doi.org/10.3390/aerospace10050474